Equipment for monitoring oxygen must be functional, reliable, and capable of continuously measuring the concentration of oxygen in the containment atmosphere following a significant beyond design-basis accident for combustible gas control and accident management, including emergency planning. (ii) Equipment must be provided for monitoring hydrogen in the containment. Equipment for monitoring hydrogen must be functional, reliable, and capable of continuously measuring the concentration of hydrogen in the containment atmosphere following a significant beyond design-basis accident for accident management, includ- - ing emergency planning. (5) Structural analysis. An applicant must perform an analysis that demonstrates containment structural integrity. This demonstration must use an analytical technique that is accepted by the NRC and include sufficient supporting justification to show that the technique describes the containment response to the structural loads involved. The analysis must address an accident that releases hydrogen generated from 100 percent fuel clad-coolant reaction accompanied by hydrogen burning. Systems necessary to ensure containment integrity must also be demonstrated to perform their function under these conditions. - (d) Requirements for future non watercooled reactor applicants and licensees and certain water-cooled reactor applicants and licensees. The requirements in this paragraph apply to all construction permits and operating licenses under this part, and to all design approvals, design certifications, combined licenses, or manufacturing licenses under part 52 of this chapter, for non water-cooled reactors and watercooled reactors that do not fall within the description in paragraph (c), footnote 1 of this section, any of which are issued after October 16, 2003. Applications subject to this paragraph must - (1) Information addressing whether accidents involving combustible gases are technically relevant for their design, and - (2) If accidents involving combustible gases are found to be technically rel- evant, information (including a designspecific probabilistic risk assessment) demonstrating that the safety impacts of combustible gases during designbasis and significant beyond designbasis accidents have been addressed to ensure adequate protection of public health and safety and common defense and security. [68 FR 54141, Sept. 16, 2003] ## § 50.45 Standards for construction permits. An applicant for a license or an amendment of a license who proposes to construct or alter a production or utilization facility will be initially granted a construction permit, if the application is in conformity with and acceptable under the criteria of §§ 50.31 through 50.38 and the standards of §§ 50.40 through 50.43. ## §50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide pellets within cylindrical zircaloy or ZIRLO cladding must be provided with an emergency core cooling system (ECCS) that must be designed so that its calculated cooling performance following postulated loss-of-coolant accidents conforms to the criteria set forth in paragraph (b) of this section. ECCS cooling performance must be calculated in accordance with an acceptable evaluation model and must be calculated for a number of postulated loss-of-coolant accidents of different sizes, locations, and other properties sufficient to provide assurance that the most severe postulated loss-of-coolant accidents are calculated. Except as provided in paragraph (a)(1)(ii) of this section, the evaluation model must include sufficient supporting justification to show that the analytical technique realistically describes the behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental data must be made and uncertainties in the analysis method and inputs must be identified and assessed so that the uncertainty in the calculated results can be estimated. This uncertainty must be accounted for, so